Введение в анализ данных

826

В мире, который столь сильно сосредоточен на информационных технологиях, огромные объемы информации и данных производятся и сохраняются каждый день.

Часто их источником являются системы автоматического обнаружения, сенсоры и инструменты ученых. Как вариант — вы создаете их самостоятельно, даже не осознавая: снимаете деньги с банковского счета, осуществляете покупку, делаете запись в блоге или социальной сети.

Но что такое данные?

Данные — это не информация, по крайне мере, по меркам их формы. В бесформенном потоке байтов на первый взгляд сложно понять их суть вне чисел, слов или времени, которое они представляют.

Информация — это результат обработки с учетом определенного набора данных.

Она предлагает определенные выводы, которые затем разными способами могут быть использованы. Этот процесс извлечения информации из сырых данных и называется анализом данных.

Цель анализа данных — извлекать информацию, которую не просто истолковать, но которая, если ее понять, поможет проводить исследования. Такие исследования в свою очередь дадут возможность понять системы, ответственные за создание данных и в будущем делать прогнозы относительно работы систем и их развития.

Будучи изначально простым методичным подходом к защите данных, анализ данных превратился в полноценную дисциплину, которая привела к появлению сложных методологий и полноценных моделей.

фотоМодели

Модель — это перевод изучаемой системы в математическую форму.

Когда есть математическая или логическая форма, которая может описывать реакции системы на разные уровни давления, появляется возможность делать предсказания о ее развитии или ответах на определенные вводные данные. Поэтому цель анализа данных — это не модель, а качество силы предсказания.

Сила предсказания модели зависит не только от качества техник создания моделей, но и от возможности выбрать хороший набор данных, на основе которого и будет построен процесс анализа.

Так, поиск данных, их извлечение и последующая обработка, которые являются подготовительными этапами анализа, также относятся к дисциплине. Причина тому — влияние результатов этих процессов на конечный результат.

Визуализация данных

Пока что речь шла только о данных, работе с ними и обработке с помощью математических операций. Параллельно этим этапам анализа данных развивались различные способы визуализации данных.

Чтобы понять данные — конкретно и то, какую роль они играют в общей картине — нет лучшего способа, чем разработка графического представления.

Такая репрезентация способна превращать информацию, иногда неявно скрытую, в схемы, которые помогают проще ее понять. В течение лет было разработано множество моделей отображения. Они получили название графиков.

Проверка модели

В конце процесса анализа данных у вас есть модель и набор графиков. На их основе можно делать прогнозы изучаемой системы, а после этого переходить к тестовой фазе. Модель будет проверена с помощью другого набора данных, для которого есть правильные ответы.

Эти данные не будут использованы для предсказательной модели. В зависимости от возможности модели повторять реальные ответы, у вас будут расчеты ошибок. Также знание о действительности модели и ее рабочих пределах.

Эти результаты можно сравнить с любыми другими моделями, чтобы понять, являются ли новые более эффективными.

Внедрение результатов анализа

После оценки нужно переходить к последней фазе анализа данных — развертыванию. Этот этап включает внедрение результатов анализа — фактически использованию решений, принятых на основе предсказаний модели и связанных рисков.

Анализ данных отлично вписывается в разные виды профессиональной деятельности. Поэтому знание этой дисциплины и умение использовать ее на практике является очень полезным. Она позволяет проверять гипотезы и лучше понимать анализируемые системы.

Тест на знание python

Какая функция разворачивает список задом наперед?
Что делает код ниже?
Какой будет результат выполнения этого кода?
Какой будет результат выполнения этого кода?
Как нельзя назвать функцию?
Александр
Я создал этот блог в 2018 году, чтобы распространять полезные учебные материалы, документации и уроки на русском. На сайте опубликовано множество статей по основам python и библиотекам, уроков для начинающих и примеров написания программ. Пишу на популярные темы: веб-разработка, работа с базами данных, data sciense и другие...