Топ-16 Python-приложений в реальном мире

Удовольствие от написания Python-кода заключается в возможности создавать короткие, лаконичные и читаемые классы, которые выражают большой объем логики в небольшом объеме кода, а не в сотнях строк, утомляющих читателя.

Гвидо ван Россум

За последние несколько лет технологии вокруг нас поменялись почти во всех аспектах. Мы живем в мире, где во главе угла стоит программное обеспечение, а за почти любой службой стоит какая-нибудь строчка кода. Индустрия путешествий, банкинг, образование, исследования, военная сфера — лишь немногие из тех, кто полагается на ПО.

Любой софт написан на каком-то языке программирования. А число последних лишь растет.

Однако одним из самых популярных в мире на сегодня является Python. В этом материале рассмотрим примеры реальных приложений, работающих на этом языке.

Реальные приложения на Python

Python сильно поменялся с момента создания в 1991 году Гвино ван Россумом. Это динамический, интерпретируемый, высокоуровневый язык программирования, с помощью которого можно создать массу разнообразных приложений. У него плавная кривая обучения и понятный синтаксис.

С помощью Python делают веб-приложения, видеоигры, занимаются Data Science и машинным обучения, разрабатывают софт, работающий в реальном мире, а также встроенные приложения и многое другое.

1. Веб-разработка

Наверняка все разработчики знают, что такое веб-разработка. Это квинтэссенция применимости Python. Также этот язык выделяет широкое разнообразие фреймворков и систем управления контентом (CMS), которые упрощают жизнь разработчика. Среди самых популярных решений — Django, Flask, Pyramid и Bottle. Среди CMS выделяются Django CMS, Plone CMS и Wagtail.

Веб-разработка на Python дает такие преимущества, как повышенная безопасность, масштабируемость и удобство в процессе работы. Также язык из коробки поддерживает такие протоколы, как HTML, XML, email-протоколы, FTP. У Python одна из крупнейших коллекций библиотек, упрощающих и улучшающих жизнь разработчика.

Посмотреть список сайтов, которые использую python можно на https://trends.builtwith.com/framework/Python.

2. Разработка игр

По аналогии с веб-разработкой в Python есть масса инструментов и библиотек для разработки игр. Кстати, а вы знали, что на этом языке программирования была написала популярная некогда Battlefield 2?

Для разработки игр используются такие библиотеки, как PyGame, Pycap, Construct, Panda3D, PySoy и PyOpenGL.

Также с помощью Python были разработаны такие проекты, как Sims 4, World of Tanks, Civilization IV и EVE Online. Можно вспомнить еще Mount & Blade, Doki Doki Literature Club, Frets on Fire и Disney’s Toontown Online.

3. Искусственный интеллект и машинное обучение

По данным GitHub Python расположился на втором месте среди языков, используемых для машинного обучения.

Искусственный интеллект и машинное обучение — очень популярные темы сегодня. С помощью них мы сегодня принимаем очень много решений. Python отчасти повлиял на такой рост популярность отрасли.

Стабильность и безопасность языка сделали его идеальным для интенсивных вычислений, без которых AI и ML не обходятся. А широкая коллекция библиотек помогает при разработке моделей и алгоритмов. Вот самые популярные библиотеки:

  • SciPy для научных и технических вычислений.
  • Pandas для анализа данных и манипуляции ими.
  • Keras для нейронных сетей.
  • TensorFlow для машинного обучения, особенно для глубоких нейронных сетей.
  • NumPy для сложных математических функций и вычислений.
  • Scikit-Learn для работы с разными моделями машинного обучения.

4. Графический интерфейс для настольных приложений

Иногда можно обойтись и без полноценного интерфейса, но для большинства проектов сегодня важен GUI. И для них в Python тоже есть множество решений.

При этом доступный синтаксис и модульная структура позволяют создавать быстрые и отзывчивые интерфейсы, делая еще и сам процесс разработки приятным. Среди самых популярных библиотек и фреймоворков — PyQt, Tkinter, Python GTK+, wxWidgets и Kivy.

5. Обработка изображений

Благодаря росту популярности машинного обучения, глубокого обучения и нейронных сетей выросла и роль инструментов для (предварительной) обработки изображений. Python в полной мере удовлетворяет этот спрос.

Среди самых популярных инструментов в Python можно выделить OpenCV, Scikit-Image, Python Imaging Library (PIL). Среди известных приложений, использующих Python — GIMP, Corel PaintShop, Blender и Houdini.

6. Обработка текста

Обработка текста — чуть ли не самый распространенный сценарий использования Python. Она руку идет с NLP (обработкой естественного языка), но не будем погружаться в эту тему сейчас. Обработка текста позволяет обрабатывать большие объемы текста, предоставляя гибкость структуры. Можно запросто сортировать строки, извлекать определенный текст, форматировать абзацы и так далее.

7. Бизнес приложения

Бизнес приложения во многом отличаются от обычного потребительского ПО. Во-первых, они предлагают ограниченный набор функций вместо десяток или даже сотен возможностей. Во-вторых, у них есть конкретная целевая группа (чаще всего ею выступает определенная организация).

Python отлично подходит для разработки таких высоконагруженных приложений.

Например, с помощью Python созданы Odoo и Tryton.

Еще одной важной составляющей любого приложения является безопасность. И хотя почти все программы создаются с прицелом на безопасность, возможности Python в этом плане очень важны для бизнес-решений. Также Python позволяет писать масштабируемый код.

8. Образовательные и тренировочные программы

Python — отличная точка входа для каждого, кто хочет познакомиться с миром современного программирования. Все благодаря максимально простому синтаксису языка, который очень напоминает английский. Также изучается Python быстрее других языков. Именно поэтому этот язык один из основных кандидатов на то, чтобы быть первым языком программирования.

Есть масса обучающих ресурсов для получения начальных знаний по Python, но среди самых популярных можно выделить Coursera, edX, Udemy, Python Institute и Harvard.

9. Аудио и видео приложения

Эффективность Python позволяет использовать его для аудио и видео приложений. Для этого есть масса инструментов и библиотек. Сигнальная обработка, управление аудио, распознавание звуков — все это доступно с помощью таких библиотек, как Pyo, pyAudioANalysis, Dejavu и других.

Для видео же есть Scikit-video, OpenCV и SciPy. С их помощью можно управлять видеороликами и готовить их к использованию в других приложениях. На Python написаны Spotify, Netflix и YouTube.

10. Парсинг

В интернете просто невероятные объемы информации. И с помощью веб-парсеров данные на сайтах можно собирать, сохраняя их в одном месте. После этого их могут использовать исследователи, аналитики или организации для самых разных задач.

На Python есть такие библиотеки, как PythonRequest, BeautifulSoup, MechanicalSoup, Selenium и другие. Парсеры используются для отслеживания цены, аналитики, анализа в социальных медиа, проектах машинного обучения и в любых других проектах, где есть большие объемы данных.

11. Data Science и визуализация данных

Данные играют ключевую роль в современном мире. Они помогают понимать людей, их вкусы, собирать и анализировать интересные наблюдения. Это все — важная часть Data Science. В этой области требуется определить проблему, собрать данные, обработать их, изучить, проанализировать и визуализировать.

В экосистеме Python есть такие решения, как TensorFlow, PyTorch, Pandas, Scikit-Learn, NumPy, SciPy и многие другие.

Визуализация важна, когда данные нужно преподнести команде или держателям акций. Для этого в Python есть Plotly, Matplotlib, Seaborn, Ggplot, Geoplotlib и другие.

12. Научные и математические приложения

Мы уже определили, что в Python есть библиотеки для научных и математических вычислений, включая AI, ML и Data Science. Но даже если не брать эти сферы, язык пригодится, например, для работы с высокоуровневыми математическими функциями.

Стоит отметить такие инструменты, как Pandas, IPython, SciPy, Numeric Python, Matplotlib и другие. С помощью Python созданы такие приложения, как FreeCAD и Abaqus.

13. Разработка программного обеспечения

Python подходит не только для веб-разработки, научной разработки, создания игр или встраиваемых систем. По большому счету, это универсальное решение для софта любого типа. Все это возможно благодаря тому, что Python обеспечивает высокую скорость исполнения, хорошую совместимость, отличную поддержку со стороны сообщества, а также огромное количество библиотек. С помощью Python были созданы Roundup, Buildbot, SCons, Mercurial, Orbiter и Allura.

Часто разработчики используют Python как вспомогательный язык для управления проектами, контроля сборок и тестирования.

14. Операционные системы

Операционные системы — мозг любого компьютера. На Python, например, работают ОС, построенные на базе Linux. Как минимум, отдельные части таких систем.

В качестве примеров можно вспомнить Ubiquity Installer от Ubuntu, Anaconda Installer от Red Hat Enterprise. Также язык использовался для создания Gentoo Linux и системы управления пакетами Portage в Google Chrome OS. Вообще комбинация Python и C дает огромные преимущества при проектировании и разработке операционных систем.

15. CAD-приложения

CAD (computer aided design) приложения преимущественно используются в автомобильной, аэрокосмической и архитектурной сферах. Они помогают инженерам и дизайнерам проектировать продукты с точностью до миллиметров.

В среде Python из таких приложений есть FreeCAD, Fandango, PythonCAD, Blender и Vintech RCAM. Они предоставляют такие функции, как макрозапись, верстаки, симуляция роботов, скетчинг, поддержка мультиформатного импорта/экспорта, модули технического чертежа и многое другое.

16. Встроенные приложения

Одна из самых впечатляющих возможностей Python — работа на встроенном железе. Это такие устройства, которые предназначены для выполнения ограниченного набора действий. Встроенный софт — это тот, который отвечает за работу таких устройств. Среди самых популярных приложений MicroPython, Zerynth, PyMite и EmbeddedPython.

В качестве примера встроенных устройств можно вспомнить цифровые камеры, смартфоны, Raspberry Pi, промышленные роботы и другие, которые могут работать с помощью Python. Не все знают, но Python может использоваться как слой абстракции там, где на системном уровне работают C или C++.

Другие приложение на Python

  • Консольные приложения
  • Компьютерное зрение
  • Робототехника
  • Разработка языков
  • Автоматическое тестирование
  • Автоматизация
  • Анализа данных

Вывод

Python — продвинутый и универсальный язык программирования, который быстро приобретает популярность среди разработчиков в разных отраслях. Его можно применить почти в любой сфере благодаря широкому набору библиотек.

Если вы только знакомитесь с программированием в целом, то этот материал должен был убедить вас выбрать в качестве первого языка Python. Благо, выучить его сегодня легко с помощью обилия книг, курсов, GitHub-репозиториев, популярных инструментов и библиотек.

Обучение с трудоустройством

Появились вопросы? Задайте на Яндекс.Кью

У сайта есть сообщество на Кью >> Python Q <<. Там я, эксперты и участники отвечаем на вопросы по python и программированию.

Максим
Я создал этот блог в 2018 году, чтобы распространять полезные учебные материалы, документации и уроки на русском. На сайте опубликовано множество статей по основам python и библиотекам, уроков для начинающих и примеров написания программ.
Мои контакты: Почта
admin@pythonru.comAlex Zabrodin2018-10-26OnlinePython, Programming, HTML, CSS, JavaScript