Вот проблема, которую я недавно пытался решить: дано целое число n, каковы все его делители?
Делитель, также известный как фактор или множитель, — это такое целое число m, на которое n делится без остатка. Например, делителями числа 12 являются 1, 2, 3, 4, 6 и 12.
В итоге я написал кое-что с помощью itertools, и в моем коде используется несколько интересных моментов из теории чисел. Я не знаю, буду ли я возвращаться к нему снова, но я надумал написать эту статью, потому что мои попытки решить озвученный выше вопрос перетекли в довольно забавное упражнение.
Простейший подход
Если мы хотим найти все числа, которые делят n без остатка, мы можем просто перебрать числа от 1 до n:
def get_all_divisors_brute(n):
for i in range(1, int(n / 2) + 1):
if n % i == 0:
yield i
yield n
На деле нам нужно дойти только до n/2, потому что все, что больше этого значения, гарантировано не может быть делителем n — если вы разделите n на что-то большее, чем n/2, результат не будет целым числом.
Этот код очень прост, и для малых значений n он работает достаточно хорошо, но он довольно неэффективен и медлителен в других случаях. По мере увеличения n время выполнения линейно увеличивается. Можем ли мы сделать лучше?
Факторизация
В моем проекте я работал в основном с факториалами. Факториал числа n, обозначаемый n! — это произведение всех целых чисел от 1 до n включительно. Например:
8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
Поскольку факториалы состоят преимущественно из небольших множителей, я решил попробовать получить список делителей, определив сначала наименьшие из них. В частности, я искал простые множители, то есть те, которые также являются простыми числами. (Простое число — это число, единственными делителями которого являются оно само и 1. Например, 2, 3 и 5 являются простыми, а 4 и 6 — нет).
Вот функция, которая находит простые делители числа n:
def get_prime_divisors(n):
i = 2
while i * i <= n:
if n % i == 0:
n /= i
yield i
else:
i += 1
if n > 1:
yield n
Это похоже на предыдущую функцию, использующую перебор делителей: мы продолжаем пробовать множители, и если находим подходящий, то делим на него. В противном случае мы проверяем следующее число. Это довольно стандартный подход к поиску простых множителей.
Теперь мы можем использовать этот метод для получения факторизации числа, то есть для его записи в виде произведения простых чисел. Например, факторизация числа 8! выглядит следующим образом:
8! = 2^7 × 3^2 × 5 × 7
Вычисление такой факторизации относительно эффективно, особенно для факториалов, так как, поскольку все простые множители очень малы, вам не нужно делать много делений.
В теории чисел есть утверждение, называемое основной теоремой арифметики, которое гласит, что простые факторизации (разложения) уникальны: для любого числа n существует только один способ представить его в виде произведения простых множителей. (Я не буду приводить здесь доказательство, но вы можете найти его в Википедии).
Это дает нам способ находить делители путем перебора всех комбинаций простых множителей. Простые множители любого m делителя числа n должны входить в подмножество простых множителей n, иначе m не делило бы число n.
Переход от факторизации к делителям
Для начала разложим исходное число на простые множители с указанием «кратности», то есть мы должны получить список всех множителей и количество раз, которое каждый из них встречается в факторизации:
import collections
def get_all_divisors(n):
primes = get_prime_divisors(n)
primes_counted = collections.Counter(primes)
...
Затем, давайте продолжим и возведем каждое простое число во все степени, которые могут появиться в возможном делителе n.
def get_all_divisors(n):
...
divisors_exponentiated = [
[div ** i for i in range(count + 1)]
for div, count in primes_counted.items()
]
Например, для 8! представленный код выдаст нам следующее:
[
[1, 2, 4, 8, 16, 32, 64, 128], // 2^0, 2^1, ..., 2^7
[1, 3, 9], // 3^0, 3^1, 3^2
[1, 5],
[1, 7],
]
Затем, чтобы получить делители, мы можем использовать довольно удобную функцию itertools.product, которая принимает на вход итерабельные объекты и возвращает все возможные упорядоченные комбинации их элементов. В нашем случае она выбирает по одному числу из каждого списка с возведениями в степень, а затем, перемножая их вместе, мы получаем очередной делитель n.
import itertools
def calc_product(iterable):
acc = 1
for i in iterable:
acc *= i
return acc
def get_all_divisors(n):
...
for prime_exp_combination in itertools.product(*divisors_exponentiated):
yield calc_product(prime_exp_combination)
Таким образом, мы находим все делители n (хотя, в отличие от предыдущих функций, они не отсортированы).
Собираем все вместе
Сложив все это, мы получим следующую функцию для вычисления делителей n:
import collections
import itertools
def get_prime_divisors(n):
i = 2
while i * i <= n:
if n % i == 0:
n /= i
yield i
else:
i += 1
if n > 1:
yield n
def calc_product(iterable):
acc = 1
for i in iterable:
acc *= i
return acc
def get_all_divisors(n):
primes = get_prime_divisors(n)
primes_counted = collections.Counter(primes)
divisors_exponentiated = [
[div ** i for i in range(count + 1)]
for div, count in primes_counted.items()
]
for prime_exp_combination in itertools.product(*divisors_exponentiated):
yield calc_product(prime_exp_combination)
print(list(get_all_divisors(40320))) # 8!
Такая реализация очень эффективна, особенно когда у вас много маленьких простых множителей, как в случае с факториалами, с которыми я работал. Я не знаю, насколько хорошо она покажет себя в общем случае, и, если вы занимаетесь серьезными научными вычислениями, я уверен, что вы легко найдете уже реализованные и оптимизированные алгоритмы для такого рода вещей.