Как и зачем использовать Python для анализа данных

Решения в сфере Big Data и Business Analytic приносят сотни миллиардов каждый год, и доходы постоянно растет. В этом нет ничего удивительного, поскольку анализ данных помогает бизнесу предсказывать запросы потребителей, персонализировать их политики, предотвращать возможные неудачи и принимать более удачные решения.

Популярность отрасли постоянно растет. В 2015 только 17% компаний использовали возможности аналитики Big Data, а в 2017 это значение выросло до 53%.

Чтобы присоединиться к этой группе, нужно знать как минимум один язык программирования, используемый для data science.

В этом материале разберем Python и то, как он используется для анализа данных.

Подходит ли Python для анализа данных?

Python появился еще в 1990 году, но начал приобретать популярность не так давно. В 2020 Python стал четвертым в списке самых используемых языков программирования после JavaScript, HTML/CSS и SQL — его используют 44,1% разработчиков.

Python — это интерпретируемый, высокоуровневый объектно-ориентированный язык общего назначения, используемый для разработки API, искусственного интеллекта, веб-разработки, интернета вещей и так далее.

Отчасти Python стал так популярен благодаря специалистам в области data science. Это один из самых простых языков для изучения. Он предлагает множество библиотек, которые применяются на всех этапах анализа данных. Поэтому язык однозначно подходит для этих целей.

Как Python используется для анализа данных?

Python отлично работает на всех этапах. В первую очередь в этом помогают различные библиотеки. Поиск, обработка, моделирование (вместе с визуализацией) — 3 самых популярных сценария использования языка для анализа данных.

Поиск данных

Инженеры используют Scrapy и BeautifulSoup для поиска данных с помощью Python.С помощью Scrapy можно создавать программы, которые собирают структурированные данные в сети. Также его можно использовать для сбора данных из API.

BeautifulSoup применяется там, где получить данные из API не выходит; он собирает данные и расставляет их в определенном формате.

Как и зачем использовать Python для анализа данных

Обработка и моделирование данных

На этом этапе в числе самых используемых библиотек NumPy и Pandas. NumPy (Numerical Python) используется для сортировки больших наборов данных. Он упрощает математические операции и их векторизацию на массивах. Pandas предлагает два структуры данных: Series (список элементов) и Data Frames (таблица с несколькими колонками). Эта библиотека конвертирует данные в Data Frame, позволяя удалять и добавлять новые колонки, а также выполнять разные операции.

Обработка и моделирование данных

Визуализация данных

Matplotlib и Seaborn широко используются для визуализации данных. Они помогают конвертировать огромные списки чисел в удобные графики, гистограммы, диаграммы, тепловые карты и так далее.

Конечно, библиотек куда больше. Python предлагает бесчисленное количество инструментов для проектов в сфере анализа данных и может помочь при выполнении любых задач в процессе.

Как и зачем использовать Python для анализа данных

Преимущества и недостатки Python для анализа данных

Почти невозможно найти идеальный язык для анализа данных, поскольку у каждого есть свои достоинства и недостатки. Один лучше подходит для визуализации, а другой лучше работает с большими объемами данных. Выбор зависит и от личных предпочтений разработчика. Посмотрим на преимущества и недостатки Python для анализа данных.

Как и зачем использовать Python для анализа данных

Преимущества Python

Отличное сообщество

Программирование никогда не было простым, и даже разработчики с большим количеством опыта сталкиваются с проблемами. К счастью, у каждого языка есть сообщество, помогающее находить верные решения. На GitHub, например, более 90000 репозиториев с Python-проектами. Поэтому почти всегда можно найти ответ на интересующий вопрос.

Легко изучается

Python — один из самых простых языков для изучения благодаря его простому синтаксису и читаемости. Он также требует куда меньшего количества строк кода. Разработчик может не думать о самом коде, а о том, что тот делает. Заниматься отладкой на Python тоже намного проще.

Гибкий и масштабируемый

Python используется в самых разных отраслях благодаря его гибкости и широкому набору инструментов.

Разнообразие библиотек

Для Python существует огромное количество библиотек, которые можно использовать на разных этапах анализа данных. Плюс, большая часть из них — бесплатные. Это все влияет на простоту работы с данными с помощью Python.

Недостатки

Динамическая типизация

Python — язык общего назначения и был создан не только для анализа данных. Разрабатывать с динамической типизацией куда проще, однако это замедляет поиск ошибок в данных, связанных с разными типами.

Где учится анализу данных

Один из лучших курсов — годовая программа Профессия Data Scientist: анализ данных от Skillbox. Аналитики из Ivi, QIWI, Rambler и Epam обучают работе с данными и комментируют домашние задания.

Программа курса:

  1. Python для Data Science
  2. Аналитика. Начальный уровень
  3. Статистика и теория вероятностей
  4. Основы математики для Data Science
  5. Аналитика. Средний уровень
  6. Универсальные знания программиста
  7. Английский для IT-специалистов 

После прохождения курса вы реализуете дипломный проект и получите помощь с трудоустройством. Сейчас действует скидка и рассрочка, подробности на сайте Skillbox.

Альтернативы Python для анализа данных

Хотя Python и считается одним из главных языков для анализа данных, существуют и другие варианты. Каждый из таких языков предназначен для выполнения конкретной задачи (поиска данных, визуализации или работы с большими объемами данных), а некоторые и вовсе были разработаны специально для анализа данных и статистических вычислений.

R

R — второй по популярности язык для анализа данных, который часто сравнивают с Python. Он был разработан для статистических вычислений и графики, что отлично подходит для анализа данных. В нем есть инструменты для визуализации данных. Он совместим с любыми статистическими приложениями, работает офлайн, а разработчикам предлагаются различные пакеты для управления данными и создания графиков.

SQL

Широко используемый язык для запросов данных и редактирования. Это также отличный инструмент для хранения и получения данных. SQL прекрасно работает с большими базами данных и способен получать данные из сети быстрее остальных языков.

Julia

Julia был разработан для data science и научных вычислений. Это относительно новый язык, который быстро приобретает популярность среди специалистов в области. Главная его цель — преодолеть недостатки Python и стать выбором №1 среди инженеров. Julia — компилируемый язык, что подразумевает более высокую производительность. Однако синтаксис похож на Python, пусть и с акцентом на математику. В Julia можно использовать библиотеки из Python, C и Forton. Также язык славится параллельными вычислениями, которые работают быстрее и сложнее чем в Python.

Scala

Scala и фреймворк Spark часто используются для работы с большими базами данных. Для этого даже не обязательно загружать все данные — можно работать кусками. Scala работает на JVM и может быть встроен в enterprise-код. Предлагает массу инструментов для обработки данных, которые работают быстрее, чем у Python и R.

Это 4 самых популярных языка среди специалистов в сфере data science. Однако стоит также отметить MATLAB для статистического анализа, TensorFlow для BigData, графов и параллельных вычислений, а также JavaScript для визуализации.

Выводы

Данные — важная часть любого бизнеса. Для анализа данных сегодня существует масса языков, включая R, SQL, Julia и Scala. Каждый из них выполняет определенный набор задач и справляется с ним лучше остальных. В целом, нет одного идеального языка для проекта.

Тем не менее Python остается самым популярным языков программирования для анализа данных. Он предлагает массу библиотек, имеет огромное сообщество и легко изучается.

Обучение с трудоустройством

Появились вопросы? Задайте на Яндекс.Кью

У сайта есть сообщество на Кью >> Python Q <<. Там я, эксперты и участники отвечаем на вопросы по python и программированию.