Чтение и запись файлов Excel (XLSX) в Python

Pandas можно использовать для чтения и записи файлов Excel с помощью Python. Это работает по аналогии с другими форматами. В этом материале рассмотрим, как это делается с помощью DataFrame.

Помимо чтения и записи рассмотрим, как записывать несколько DataFrame в Excel-файл, как считывать определенные строки и колонки из таблицы и как задавать имена для одной или нескольких таблиц в файле.

Установка Pandas

Для начала Pandas нужно установить. Проще всего это сделать с помощью pip.

Если у вас Windows, Linux или macOS:

pip install pandas # или pip3

В процессе можно столкнуться с ошибками ModuleNotFoundError или ImportError при попытке запустить этот код. Например:

ModuleNotFoundError: No module named 'openpyxl'

В таком случае нужно установить недостающие модули:

pip install openpyxl xlsxwriter xlrd  # или pip3

Запись в файл Excel с python

Будем хранить информацию, которую нужно записать в файл Excel, в DataFrame. А с помощью встроенной функции to_excel() ее можно будет записать в Excel.

Сначала импортируем модуль pandas. Потом используем словарь для заполнения DataFrame:


import pandas as pd

df = pd.DataFrame({'Name': ['Manchester City', 'Real Madrid', 'Liverpool',
'FC Bayern München', 'FC Barcelona', 'Juventus'],
'League': ['English Premier League (1)', 'Spain Primera Division (1)',
'English Premier League (1)', 'German 1. Bundesliga (1)',
'Spain Primera Division (1)', 'Italian Serie A (1)'],
'TransferBudget': [176000000, 188500000, 90000000,
100000000, 180500000, 105000000]})

Ключи в словаре — это названия колонок. А значения станут строками с информацией.

Теперь можно использовать функцию to_excel() для записи содержимого в файл. Единственный аргумент — это путь к файлу:

А вот и созданный файл Excel:

файл Excel в python

Стоит обратить внимание на то, что в этом примере не использовались параметры. Таким образом название листа в файле останется по умолчанию — «Sheet1». В файле может быть и дополнительная колонка с числами. Эти числа представляют собой индексы, которые взяты напрямую из DataFrame.

Поменять название листа можно, добавив параметр sheet_name в вызов to_excel():


df.to_excel('./teams.xlsx', sheet_name='Budgets', index=False)

Также можно добавили параметр index со значением False, чтобы избавиться от колонки с индексами. Теперь файл Excel будет выглядеть следующим образом:

Чтение и запись файлов Excel (XLSX) в Python

Запись нескольких DataFrame в файл Excel

Также есть возможность записать несколько DataFrame в файл Excel. Для этого можно указать отдельный лист для каждого объекта:


salaries1 = pd.DataFrame({'Name': ['L. Messi', 'Cristiano Ronaldo', 'J. Oblak'],
'Salary': [560000, 220000, 125000]})

salaries2 = pd.DataFrame({'Name': ['K. De Bruyne', 'Neymar Jr', 'R. Lewandowski'],
'Salary': [370000, 270000, 240000]})

salaries3 = pd.DataFrame({'Name': ['Alisson', 'M. ter Stegen', 'M. Salah'],
'Salary': [160000, 260000, 250000]})

salary_sheets = {'Group1': salaries1, 'Group2': salaries2, 'Group3': salaries3}
writer = pd.ExcelWriter('./salaries.xlsx', engine='xlsxwriter')

for sheet_name in salary_sheets.keys():
salary_sheets[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False)

writer.save()

Здесь создаются 3 разных DataFrame с разными названиями, которые включают имена сотрудников, а также размер их зарплаты. Каждый объект заполняется соответствующим словарем.

Объединим все три в переменной salary_sheets, где каждый ключ будет названием листа, а значение — объектом DataFrame.

Дальше используем движок xlsxwriter для создания объекта writer. Он и передается функции to_excel().

Перед записью пройдемся по ключам salary_sheets и для каждого ключа запишем содержимое в лист с соответствующим именем. Вот сгенерированный файл:

Чтение и запись файлов Excel (XLSX) в Python

Можно увидеть, что в этом файле Excel есть три листа: Group1, Group2 и Group3. Каждый из этих листов содержит имена сотрудников и их зарплаты в соответствии с данными в трех DataFrame из кода.

Параметр движка в функции to_excel() используется для определения модуля, который задействуется библиотекой Pandas для создания файла Excel. В этом случае использовался xslswriter, который нужен для работы с классом ExcelWriter. Разные движка можно определять в соответствии с их функциями.

В зависимости от установленных в системе модулей Python другими параметрами для движка могут быть openpyxl (для xlsx или xlsm) и xlwt (для xls). Подробности о модуле xlswriter можно найти в официальной документации.

Наконец, в коде была строка writer.save(), которая нужна для сохранения файла на диске.

Чтение файлов Excel с python

По аналогии с записью объектов DataFrame в файл Excel, эти файлы можно и читать, сохраняя данные в объект DataFrame. Для этого достаточно воспользоваться функцией read_excel():


top_players = pd.read_excel('./top_players.xlsx')
top_players.head()

Содержимое финального объекта можно посмотреть с помощью функции head().

Примечание:

Этот способ самый простой, но он и способен прочесть лишь содержимое первого листа.

Посмотрим на вывод функции head():

NameAgeOverallPotentialPositionsClub
0L. Messi339393RW,ST,CFFC Barcelona
1Cristiano Ronaldo359292ST,LWJuventus
2J. Oblak279193GKAtlético Madrid
3K. De Bruyne299191CAM,CMManchester City
4Neymar Jr289191LW,CAMParis Saint-Germain

Pandas присваивает метку строки или числовой индекс объекту DataFrame по умолчанию при использовании функции read_excel().

Это поведение можно переписать, передав одну из колонок из файла в качестве параметра index_col:


top_players = pd.read_excel('./top_players.xlsx', index_col='Name')
top_players.head()

Результат будет следующим:


NameAgeOverallPotentialPositionsClub
L. Messi339393RW,ST,CFFC Barcelona
Cristiano Ronaldo359292ST,LWJuventus
J. Oblak279193GKAtlético Madrid
K. De Bruyne299191CAM,CMManchester City
Neymar Jr289191LW,CAMParis Saint-Germain

В этом примере индекс по умолчанию был заменен на колонку «Name» из файла. Однако этот способ стоит использовать только при наличии колонки со значениями, которые могут стать заменой для индексов.

Чтение определенных колонок из файла Excel

Иногда удобно прочитать содержимое файла целиком, но бывают случаи, когда требуется получить доступ к определенному элементу. Например, нужно считать значение элемента и присвоить его полю объекта.

Это делается с помощью функции read_excel() и параметра usecols. Например, можно ограничить функцию, чтобы она читала только определенные колонки. Добавим параметр, чтобы он читал колонки, которые соответствуют значениям «Name», «Overall» и «Potential».

Для этого укажем числовой индекс каждой колонки:


cols = [0, 2, 3]

top_players = pd.read_excel('./top_players.xlsx', usecols=cols)
top_players.head()

Вот что выдаст этот код:

NameOverallPotential
0L. Messi9393
1Cristiano Ronaldo9292
2J. Oblak9193
3K. De Bruyne9191
4Neymar Jr9191

Таким образом возвращаются лишь колонки из списка cols.

В DataFrame много встроенных возможностей. Легко изменять, добавлять и агрегировать данные. Даже можно строить сводные таблицы. И все это сохраняется в Excel одной строкой кода.

Рекомендую изучить DataFrame в моих уроках по Pandas.

Выводы

В этом материале были рассмотрены функции read_excel() и to_excel() из библиотеки Pandas. С их помощью можно считывать данные из файлов Excel и выполнять запись в них. С помощью различных параметров есть возможность менять поведение функций, создавая нужные файлы, не просто копируя содержимое из объекта DataFrame.

Максим
Я создал этот блог в 2018 году, чтобы распространять полезные учебные материалы, документации и уроки на русском. На сайте опубликовано множество статей по основам python и библиотекам, уроков для начинающих и примеров написания программ.
Мои контакты: Почта
admin@pythonru.comAlex Zabrodin2018-10-26OnlinePython, Programming, HTML, CSS, JavaScript