Введение
Определение
Вот пример простой функции:
def compute_surface(radius):
from math import pi
return pi * radius * radius
Для определения функции нужно всего лишь написать ключевое слово def
перед ее именем, а после — поставить двоеточие. Следом идет блок инструкций.
Последняя строка в блоке инструкций может начинаться с return
, если нужно вернуть какое-то значение. Если инструкции return
нет, тогда по умолчанию функция будет возвращать объект None
. Как в этом примере:
i = 0
def increment():
global i
i += 1
Функция инкрементирует глобальную переменную i
и возвращает None
(по умолчанию).
Вызовы
Для вызова функции, которая возвращает переменную, нужно ввести:
surface = compute_surface(1.)
Для вызова функции, которая ничего не возвращает:
increment()
Еще
Функцию можно записать в одну строку, если блок инструкций представляет собой простое выражение:
def sum(a, b): return a + b
Функции могут быть вложенными:
def func1(a, b):
def inner_func(x):
return x*x*x
return inner_func(a) + inner_func(b)
Функции — это объекты, поэтому их можно присваивать переменным.
Инструкция return
Возврат простого значения
Аргументы можно использовать для изменения ввода и таким образом получать вывод функции. Но куда удобнее использовать инструкцию return
, примеры которой уже встречались ранее. Если ее не написать, функция вернет значение None
.
Возврат нескольких значений
Пока что функция возвращала только одно значение или не возвращала ничего (объект None). А как насчет нескольких значений? Этого можно добиться с помощью массива. Технически, это все еще один объект. Например:
def stats(data):
"""данные должны быть списком"""
_sum = sum(data) # обратите внимание на подчеркивание, чтобы избежать переименования встроенной функции sum
mean = _sum / float(len(data)) # обратите внимание на использование функции float, чтобы избежать деления на целое число
variance = sum([(x-mean)**2/len(data) for x in data])
return mean,variance # возвращаем x,y — кортеж!
m, v = stats([1, 2, 1])
Аргументы и параметры
В функции можно использовать неограниченное количество параметров, но число аргументов должно точно соответствовать параметрам. Эти параметры представляют собой позиционные аргументы. Также Python предоставляет возможность определять значения по умолчанию, которые можно задавать с помощью аргументов-ключевых слов.
Параметр — это имя в списке параметров в первой строке определения функции. Он получает свое значение при вызове. Аргумент — это реальное значение или ссылка на него, переданное функции при вызове. В этой функции:
def sum(x, y):
return x + y
x и y — это параметры, а в этой:
sum(1, 2)
1 и 2 — аргументы.
При определении функции параметры со значениями по умолчанию нужно указывать до позиционных аргументов:
def compute_surface(radius, pi=3.14159):
return pi * radius * radius
Если использовать необязательный параметр, тогда все, что указаны справа, должны быть параметрами по умолчанию.
Выходит, что в следующем примере допущена ошибка:
def compute_surface(radius=1, pi):
return pi * radius * radius
Для вызовов это работает похожим образом. Сначала нужно указывать все позиционные аргументы, а только потом необязательные:
S = compute_surface(10, pi=3.14)
На самом деле, следующий вызов корректен (можно конкретно указывать имя позиционного аргумента), но этот способ не пользуется популярностью:
S = compute_surface(radius=10, pi=3.14)
А этот вызов некорректен:
S = compute_surface(pi=3.14, 10)
При вызове функции с аргументами по умолчанию можно указать один или несколько, и порядок не будет иметь значения:
def compute_surface2(radius=1, pi=3.14159):
return pi * radius * radius
S = compute_surface2(radius=1, pi=3.14)
S = compute_surface2(pi=3.14, radius=10.)
S = compute_surface2(radius=10.)
Можно не указывать ключевые слова, но тогда порядок имеет значение. Он должен соответствовать порядку параметров в определении:
S = compute_surface2(10., 3.14)
S = compute_surface2(10.)
Если ключевые слова не используются, тогда нужно указывать все аргументы:
def f(a=1,b=2, c=3):
return a + b + c
Второй аргумент можно пропустить:
f(1,,3)
Чтобы обойти эту проблему, можно использовать словарь:
params = {'a':10, 'b':20}
S = f(**params)
Значение по умолчанию оценивается и сохраняется только один раз при определении функции (не при вызове). Следовательно, если значение по умолчанию — это изменяемый объект, например, список или словарь, он будет меняться каждый раз при вызове функции. Чтобы избежать такого поведения, инициализацию нужно проводить внутри функции или использовать неизменяемый объект:
def inplace(x, mutable=[]):
mutable.append(x)
return mutable
res = inplace(1)
res = inplace(2)
print(inplace(3))
[1, 2, 3]
def inplace(x, lst=None):
if lst is None: lst=[]
lst.append()
return lst
Еще один пример изменяемого объекта, значение которого поменялось при вызове:
def change_list(seq):
seq[0] = 100
original = [0, 1, 2]
change_list(original)
original
[100, 1, 2]
Дабы не допустить изменения оригинальной последовательности, нужно передать копию изменяемого объекта:
original = [0, 1, 2]
change_list(original[:])
original
[0, 1, 2]
Указание произвольного количества аргументов
Позиционные аргументы
Иногда количество позиционных аргументов может быть переменным. Примерами таких функций могут быть max()
и min()
. Синтаксис для определения таких функций следующий:
def func(pos_params, *args):
block statememt
При вызове функции нужно вводить команду следующим образом:
func(pos_params, arg1, arg2, ...)
Python обрабатывает позиционные аргументы следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает остальные позиционные аргументы в кортеж (*args), который можно использовать в функции.
Вот так:
def add_mean(x, *data):
return x + sum(data)/float(len(data))
add_mean(10,0,1,2,-1,0,-1,1,2)
10.5
Если лишние аргументы не указаны, значением по умолчанию будет пустой кортеж.
Произвольное количество аргументов-ключевых слов
Как и в случае с позиционными аргументами можно определять произвольное количество аргументов-ключевых слов следующим образом (в сочетании с произвольным числом необязательных аргументов из прошлого раздела):
def func(pos_params, *args, **kwargs):
block statememt
При вызове функции нужно писать так:
func(pos_params, kw1=arg1, kw2=arg2, ...)
Python обрабатывает аргументы-ключевые слова следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает другие позиционные аргументы в кортеж (*args), который можно использовать в функции (см. предыдущий раздел). В конце концов, он добавляет все лишние аргументы в словарь (**kwargs), который сможет использовать функция.
Есть функция:
def print_mean_sequences(**kwargs):
def mean(data):
return sum(data)/float(len(data))
for k, v in kwargs.items():
print k, mean(v)
print_mean_sequences(x=[1,2,3], y=[3,3,0])
y 2.0
x 2.0
Важно, что пользователь также может использовать словарь, но перед ним нужно ставить две звездочки (**):
print_mean_sequences(**{'x':[1,2,3], 'y':[3,3,0]})
y 2.0
x 2.0
Порядок вывода также не определен, потому что словарь не отсортирован.
Документирование функции
Определим функцию:
def sum(s,y): return x + y
Если изучить ее, обнаружатся два скрытых метода (которые начинаются с двух знаков нижнего подчеркивания), среди которых есть __doc__
. Он нужен для настройки документации функции. Документация в Python называется docstring
и может быть объединена с функцией следующим образом:
def sum(x, y):
"""Первая срока - заголовок
Затем следует необязательная пустая строка и текст
документации.
"""
return x+y
Команда docstring
должна быть первой инструкцией после объявления функции. Ее потом можно будет извлекать или дополнять:
print(sum.__doc__)
sum.__doc__ += "some additional text"
Методы, функции и атрибуты, связанные с объектами функции
Если поискать доступные для функции атрибуты, то в списке окажутся следующие методы (в Python все является объектом — даже функция):
sum.func_closure sum.func_defaults sum.func_doc sum.func_name
sum.func_code sum.func_dict sum.func_globals
И несколько скрытых методов, функций и атрибутов. Например, можно получить имя функции или модуля, в котором она определена:
>>> sum.__name__
"sum"
>>> sum.__module
"__main__"
Есть и другие. Вот те, которые не обсуждались:
sum.__call__ sum.__delattr__ sum.__getattribute__ sum.__setattr__
sum.__class__ sum.__dict__ sum.__globals__ sum.__new__ sum.__sizeof__
sum.__closure__ sum.__hash__ sum.__reduce__ sum.__str__
sum.__code__ sum.__format__ sum.__init__ sum.__reduce_ex__ sum.__subclasshook__
sum.__defaults__ sum.__get__ sum.__repr__
Рекурсивные функции
Рекурсия — это не особенность Python. Это общепринятая и часто используемая техника в Computer Science, когда функция вызывает сама себя. Самый известный пример — вычисление факториала n! = n * n — 1 * n -2 * … 2 *1. Зная, что 0! = 1, факториал можно записать следующим образом:
def factorial(n):
if n != 0:
return n * factorial(n-1)
else:
return 1
Другой распространенный пример — определение последовательности Фибоначчи:
f(0) = 1
f(1) = 1
f(n) = f(n-1) + f(n-2)
Рекурсивную функцию можно записать так:
def fibbonacci(n):
if n >= 2:
else:
return 1
Важно, чтобы в ней было была конечная инструкция, иначе она никогда не закончится. Реализация вычисления факториала выше, например, не является надежной. Если указать отрицательное значение, функция будет вызывать себя бесконечно. Нужно написать так:
def factorial(n):
assert n > 0
if n != 0:
return n * factorial(n-1)
else:
return 1
Важно!
Рекурсия позволяет писать простые и элегантные функции, но это не гарантирует эффективность и высокую скорость исполнения.
Если рекурсия содержит баги (например, длится бесконечно), функции может не хватить памяти. Задать максимальное значение рекурсий можно с помощью модуля sys
.
Глобальная переменная
Вот уже знакомый пример с глобальной переменной:
i = 0
def increment():
global i
i += 1
Здесь функция увеличивает на 1 значение глобальной переменной i
. Это способ изменять глобальную переменную, определенную вне функции. Без него функция не будет знать, что такое переменная i
. Ключевое слово global
можно вводить в любом месте, но переменную разрешается использовать только после ее объявления.
За редкими исключениями глобальные переменные лучше вообще не использовать.
Присвоение функции переменной
С существующей функцией func
синтаксис максимально простой:
variable = func
Переменным также можно присваивать встроенные функции. Таким образом позже есть возможность вызывать функцию другим именем. Такой подход называется непрямым вызовом функции.
Менять название переменной также разрешается:
def func(x): return x
a1 = func
a1(10)
10
a2 = a1
a2()
10
В этом примере a1, a2 и func
имеют один и тот же id. Они ссылаются на один объект.
Практический пример — рефакторинг существующего кода. Например, есть функция sq
, которая вычисляет квадрат значения:
def sq(x): return x*x
Позже ее можно переименовать, используя более осмысленное имя. Первый вариант — просто сменить имя. Проблема в том, что если в другом месте кода используется sq
, то этот участок не будет работать. Лучше просто добавить следующее выражение:
square = sq
Последний пример. Предположим, встроенная функция была переназначена:
dir = 3
Теперь к ней нельзя получить доступ, а это может стать проблемой. Чтобы вернуть ее обратно, нужно просто удалить переменную:
del dir
dir()
Анонимная функция: лямбда
Лямбда-функция — это короткая однострочная функция, которой даже не нужно имя давать. Такие выражения содержат лишь одну инструкцию, поэтому, например, if
, for
и while
использовать нельзя. Их также можно присваивать переменным:
product = lambda x,y: x*y
В отличие от функций, здесь не используется ключевое слово return
. Результат работы и так возвращается.
С помощью type()
можно проверить тип:
>>> type(product)
function
На практике эти функции редко используются. Это всего лишь элегантный способ записи, когда она содержит одну инструкцию.
power = lambda x=1, y=2: x**y
square = power
square(5.)
25
power = lambda x,y,pow=2: x**pow + y
[power(x,2, 3) for x in [0,1,2]]
[2, 3, 10]
Изменяемые аргументы по умолчанию
>>> def foo(x=[]):
... x.append(1)
... print x
...
>>> foo()
[1]
>>> foo()
[1, 1]
>>> foo()
[1, 1, 1]
Вместо этого нужно использовать значение «не указано» и заменить на изменяемый объект по умолчанию:
>>> def foo(x=None):
... if x is None:
... x = []
... x.append(1)
... print x
>>> foo()
[1]
>>> foo()
[1]